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ABSTRACT 

When estimating the slope and aspect of a natural surface obtained by bathymetric Lidar scanning, 
discrepancies in the elevation data from neighbouring strips often cause artefacts. In this paper, a 
novel algorithm for slope estimation avoiding this kind of artefacts is presented. The algorithm is 
based on filtering the point data in the region of overlap using a set of scan angle based 
thresholds. Each threshold yields a data set with different selection of points from the neighbouring 
strips. Gradient estimates based on these data sets are then combined by either averaging or 
applying a trimmed mean type operation to obtain the artefact-free slope estimate. The algorithm is 
developed using bathymetric Lidar data and the obtained slope estimate of the seabed is used for 
the correction of the Lidar waveform data. The developed method is applicable in a wide range of 
situations where overlapping data from different sources need to be combined. 

INTRODUCTION 

Bathymetric Lidar scanning is gaining popularity in mapping the seabed in shallow waters. The 
method uses green lasers capable of penetrating relatively high water columns. The main 
application of bathymetric Lidar scanning is to obtain the digital elevation model (DEM) of the 
seabed. However, acquiring the entire return waveform of the laser beam enables additional 
information on the quality (i.e., sediment type, vegetation, etc.) of the sea bottom to be extracted. 

In various applications of bathymetric Lidar data the slope of the seabed surface has to be 
estimated. For example, Yamamoto et. al. (1) used the slope as well as variables derived from it to 
assess the suitability of beach areas for sea turtle nesting in Florida. In the analysis of bathymetric 
full waveform Lidar data (2,3) the slope of the bottom surface is often used to correct the features 
derived from the waveform. 

Estimating the surface slope can be a challenging task in areas where the strips of two 
neighbouring flight lines overlap. Deviations at either side of the overlap can cause significant 
errors in the slope estimate. An obvious solution to the problem would be to match the height 
deviances of the Lidar data by some kind of level matching and smoothing operation. However, 
this can be problematic in the presence of time-varying height drifts which leave significant artefact 
patterns in the slope data. Automatic calculation of a good quality slope estimate with minimal 
amount of smoothing and manual work is a challenge. Our method differs from strip quality control 
and adjustment methods like the ones presented in (4,5) by the fact that it is not meant to correct 
the point cloud but to generate error-free gradients in the presence of possible errors that are left to 
processed Lidar data set. 

In this paper, we first illustrate the problem in slope assessment using conventional gradient 
calculation methods. The proposed algorithm, based on combining scan-angle-filtered surfaces is 
presented next. Our purpose is to produce a reliable estimate of the slope of the sea bottom 
surface to be used for the correction of the return pulse waveform of bathymetric Lidar data. We do 
not aim at estimating the error of the elevation data or correcting for it; this would not be feasible, 
as there are no well-defined structures or known reference points at the seabed. The data used 
was acquired using the HawkEye II bathymetric Lidar. The wavelength of the Lidar is 532 nm and 

the average point density is one point per 2.4  2.4 m2. 
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PROBLEM DESCRIPTION 

The problem is illustrated in Figure 1 where, in the upper row, the data points belonging to the 
overlapping strips are presented using different colours. In panel c) all the data points from both 
strips are preserved, while in panel b) the data points are filtered so that only the points 
corresponding to scan angles less than a certain threshold are preserved from either strip. This 
effectively reduces the width of the region where the strips overlap. In panel a) the filtering angle is 
adjusted so that practically no overlap is seen. In the second row of Figure 1, raster surfaces 
obtained by applying the gridfit surface fitting method in the MatLab environment to the Lidar 

elevation data points are presented. In rows 3 and 4, the corresponding x- and y-directional 

gradient surfaces are shown. The gradients are calculated from the elevation raster using the 
MatLab gradient routine.  

The figures indicate that this kind of straightforward approach to gradient estimation results in 
severe artefacts at the borderlines of the region of strip overlap. This significantly reduces the 
reliability of the results of further processing steps based on slope and aspect data.  

 

Figure 1: Artefacts in gradient rasters Sx and Sy due to disagreement in the elevation values at strip 
overlap. Note that the location of the error changes with the width of the overlap region. 
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METHODS 

Let us denote the set of Lidar data points by  , , ,R x y z  , where x and y specify the location of 

the points, z denotes elevation and  denotes the corresponding Lidar scan angle (the Scan Angle 

Rank field in the LAS specifications) provided in the data set. Subsets jR  are extracted from the 

set R as follows:   

      , , , : , , ,j jR x y z x y z R         

where 1...j N  is used to identify the filtered data sets according to the threshold values j  of the 

scan angle. Consequently, jR  contains only those data points from R for which j  . In our 

experiment, 18N  , i.e., 18 different filtering levels were used, yielding 18 sets of data points. See 

Figure 1 panels a), b), and c) for a selection example where 3N  . The number of sets is limited 

by the overlap of the strips and the resolution of the angle parameter in the flight data. The lower 

limit for the scan angle threshold is the value for which the point data from neighbouring strips does 

not overlap any more. In some occasions the filtering operation may produce gaps in the data set 

and a put back operation, described later in this section, is required. 

Gridded surfaces Dj of the filtered data sets are estimated using the gridfit algorithm (6) to 

obtain corresponding raster data sets:  

 gridfit
, , 1...j jR D x y j N    

We used the following parameters of the gridfit algorithm: overlap: 0.5; cell block size: 75; 

raster resolution: 1 m; smoothing parameter: 20. Resolution and smoothing parameters control the 
output resolution and acuteness of the resulting gradient raster, respectively.  

The x- and y-directional gradients are calculated next for each gridded surface jD  using the 

gradient algorithm: 

              , ,( , ) ( , ); ( , ) ( , ), 1...x j x j y j y jS x y D x y S x y D x y j N    . 

Two different schemes for combining the gradient raster data sets were tested. The first scheme 
(Method 1) simply involves calculating the average of the data sets: 

, ,

1 1

1 1ˆ ˆ( , ) ( , ); ( , ) ( , )

N N

x x j y y j

j j

S x y S x y S x y S x y
N N

 

    

The alternative scheme (Method 2) involves sorting the magnitude values of the data sets and 
calculating the average of the   smallest magnitudes:  

,( ) ,( )

1 1

1 1
( , ) ( , ); ( , ) ( , )

k k

x x j y y j

j j

S x y S x y S x y S x y
k k

 

    

where ,( )x jS  and ,( )y jS  are the  -th smallest magnitudes of the N x- and y-directional gradient raster 

data sets, respectively. This can be considered as a modification of the trimmed mean operation, 

where the trimming is performed according to the absolute value. The value 10k   was used in 

our study to exclude eight values of highest magnitude from the averaging operation. 

Put back operation for filling the gaps in the data 

As the Lidar data points are scan-angle-filtered, gaps may be introduced into the data sets. This 
mainly happens at the edges of the survey area or when the Lidar survey lines’ overlap is not the 
same for all survey lines. These gaps must be filled, because otherwise the interpolation/ 
smoothing operation could produce artefacts such as overshoots or flat areas.  



EARSeL eProceedings, Special Issue: 34th EARSeL Symposium, 2014 4 

The first step is to differentiate the strips from one another by numbering and to calculate the 
centre lines of the strips. If not available in the data, the survey line (or strip) number can be 
extracted from the GPS time and the centre line of a strip can be estimated by fitting a straight line 
to the (x,y) values of the Lidar point data from the particular strip. 

The following steps are performed next. The points previously removed by scan angle filtering are 
considered one by one and if no point from the preserved set is found closer than the distance r, a 

gap is detected in the filtered data set and the particular removed point is considered to be a 
candidate to patch up the gap. The threshold r is determined experimentally from the average 

neighbour distance within one survey line. Subsequently, the candidate points are studied one by 
one and if any other candidates are found within the radius r that are located closer to their 
corresponding strip centre line, the particular candidate is removed from the set of candidates. All 
the remaining candidates are used to patch up the gap. 

RESULTS 

The results of the gradient estimation algorithm are presented in Figure 2. By comparing the panels 
of the figure it can be noticed that the proposed analysis essentially removes the artefacts due to 
strip overlap. Method 1 effectively smears the gradient artefacts over larger areas, while Method 2 
seems to be more efficient in removing the artefacts altogether. Detailed examination of the results of 
Method 2 reveals, however, that this method introduces small amplitude noise to the gradient raster. 

For quantitative evaluation of the proposed algorithm the elevation values of the strips 1 and 2 in 

the data shown in Figure 1 were replaced by values   and  , respectively. This models the case 
where the actual surface is flat on both strips (i.e., the gradient is 0) and the height difference in the 
overlap region is entirely due to data disagreement between the strips. The evaluation is performed 
by calculating the residual sum of squares (see Table 1) for three processing schemes: simple 
gradient calculation without scan angle filtering, Method 1, and Method 2. The results indicate that 
scan angle filtering significantly reduces the artefacts in slope calculation and that Method 2 should 
be preferred for combining the scan-angle-filtered rasters. 

Table 1. Results of quantitative analysis of the performance of the proposed algorithm.  

 
True gradient 

Gradient calculated 
without scan angle 

filtering 

Gradient of 
Method 1 

Gradient of 
Method 2 

 
2

( , ) 0x

x y

S x y   
0 2.831 0.760 0.098 

 
2

( , ) 0y

x y

S x y   
0 15.716 3.786 0.277 

DISCUSSION AND CONCLUSIONS 

The proposed method for estimating surface gradients in the regions of strip overlap was shown to 
yield a smooth and artefact-free estimate of the slope. In our implementation, all scan-angle-filtered 
rasters were saved separately to a hard disk for further combining. As a result, the memory 
requirements and calculation time increase considerably with the spatial resolution, the resolution 
of the scan angle parameter (i.e., the number of individual angle filtered data sets) and the amount 
of data. In our case the method was used for gradient estimation of a bathymetric Lidar data set of 
an area covering 8 km2. Gradient calculation of the whole data set of over 1.5 million data points 
using Method 2 took 50 minutes on an 8-core workstation using MatLab implementation. 

The problem of errors in Lidar data in the regions of strip overlap has been addressed by several 
studies. In (4), the author estimates the planar accuracy of the Lidar data by fitting surfaces to well-
defined structures (roofs of houses, for example) in the data. By the displacement of the surfaces 
fitted to the data from two neighbouring strips the planar accuracy of the data is evaluated. In (5), a 
similar approach is taken: shift in the surfaces obtained from the data of two neighbouring strips is 
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estimated in three dimensions in a sliding window. In this study, height as well as planar accuracy 
of the Lidar data are assessed and only smooth surface areas are considered in the analysis. The 
problem addressed in our study differs from those described in (4) and (5), as we are not 
interested in the elevation values, but aim at a reliable and artefact-free estimate of the surface 
gradient instead. In addition, our main focus is on relatively smooth surfaces such as seabed and 
natural terrain instead of built environment. We apply the presented method to the correction of 
pulse waveform data of bathymetric Lidar in a multistep algorithm for automatic classification of the 
sea bottom. However, the presented method can be adapted for various situations, where the point 
data of two or more data sets has local disagreements such as combining the data of two point 
clouds measured at different times and using different equipment.  

 

Figure 2: Comparison of results between the gradient estimation algorithms.  
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