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ABSTRACT 

Efficient planning of soil conservation measures requires, first, to understand the impact of soil 
erosion on soil fertility with regard to local land cover classes; and second, to identify hot spots of 
soil erosion and bright spots of soil conservation in a spatially explicit manner. Soil organic carbon 
(SOC) is an important indicator of soil fertility. The aim of this study was to conduct a spatial as-
sessment of erosion and its impact on SOC for specific land cover classes. Input data consisted of 
extensive ground truth, a digital elevation model and Landsat 7 imagery from two different sea-
sons. Soil spectral reflectance readings were taken from soil samples in the laboratory and cali-
brated with results of SOC chemical analysis using regression tree modelling. The resulting model 
statistics for soil degradation assessments are promising (R2=0.71, RMSEV=0.32). Since the area 
includes rugged terrain and small agricultural plots, the decision tree models allowed mapping of 
land cover classes, soil erosion incidence and SOC content classes at an acceptable level of accu-
racy for preliminary studies. The various datasets were linked in the hot-bright spot matrix, which 
was developed to combine soil erosion incidence information and SOC content levels (for uniform 
land cover classes) in a scatter plot. The quarters of the plot show different stages of degradation, 
from well conserved land to hot spots of soil degradation. The approach helps to gain a better un-
derstanding of the impact of soil erosion on soil fertility and to identify hot and bright spots in a spa-
tially explicit manner. The results show distinctly lower SOC content levels on large parts of the 
test areas, where annual crop cultivation was dominant in the 1990s and where cultivation has now 
been abandoned. On the other hand, there are strong indications that afforestations and fruit or-
chards established in the 1980s have been successful in conserving soil resources. 
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INTRODUCTION 

The foothills of central Tajikistan consist mainly of easily erodable loess deposits. In the 1990s, 
increasing poverty triggered by the civil war and the transformation of the economy led to wide-
spread cultivation of steep slopes, formerly used as grazing land. In these areas water erosion is 
considered to be the fastest and most widespread soil degradation process (1), it also has a highly 
negative impact on soil fertility. When the surface soil is removed through erosion, organic matter 
and clay particles are lost, resulting in reduced fertility, biological activity, aggregation and rooting 
depth (2). Examples of areas, where conservation measures have been successfully implemented, 
give an idea of the potential of the area with regard to sustainable land management (3). In the 
topic of land degradation assessments the term “hot spots” refers to areas where degradation and 
degradation risk are high; and the term “bright spots” refers to areas where degradation is being 
arrested and even reduced (4). In the context of this study hot spots indicate areas with high 
prevalence of soil erosion and low soil fertility. Bright spots on the other hand indicate areas with 
low prevalence of soil erosion and high soil fertility. Efficient planning of soil conservation meas-
ures necessitates, first, to understand the impact of soil erosion on soil fertility with regard to local 
land cover classes; and second, to identify hot spots of soil erosion and bright spots of soil conser-
vation in a spatially explicit manner. Hot spots make it possible to focus soil conservation efforts, 
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while bright spots provide an idea of the potential of the land resources and may serve as exam-
ples for successfully implemented conservation measures. 

For spatial assessments, satellite imagery provides readily available information, which permits land 
cover classification as well as soil erosion detection. Hence, such data sets have been the base of 
many erosion studies in the past 30 years (5). Particularly in areas with (seasonal) low vegetation 
cover, the signal received by satellites is dominated by soil spectral properties and can thus be inter-
preted in terms of varying soil surface conditions permitting soil degradation assessments (6). Direct 
calibrations between satellite imagery and soil erosion incidence have advantages in areas where the 
application of widely used erosion models is difficult as the necessary parameters for local conditions 
might not have been determined. Classification tree models have been successfully applied to link 
ordinal classes of soil erosion from field observations and Landsat 7 (ETM+) data (7).  

An important indicator for assessing soil fertility in dry ecosystems is soil organic carbon (SOC). Hill & 
Schütt (8) found that SOC is positively correlated to growth conditions for cereal crops in dryland agri-
culture and shows a strong correlation with qualitative erosion indicators. Various studies have aimed 
at mapping SOC contents based on satellite imagery (8,9,10). Soil spectral reflectance measured un-
der standard conditions in the laboratory permits rapid prediction of SOC at low cost (11,12).  

The aim of this study was to conduct a spatial assessment of erosion and its impact on SOC for specific 
land cover classes. The results provide the bases for preliminary land degradation assessments. 

Study area 

The landforms in central Tajikistan include valley floors (mainly irrigated agriculture), foothills (rain-
fed areas and grazing land) and mountainous areas (mainly grazing land), which succeed each 
other from South to North (Figure 1). 

 

Figure 1: Overview of Central Tajikistan with the capital Dushanbe and the test areas of Faizabad 
in the East and Varzob in the West, consisting of 10 km by 10 km area each. Each of these test 
areas contains 15 clusters, which in turn contain 13 sampling plots each. 

Within the foothills two test areas (Faizabad and Varzob) having loess deposits and similar climatic 
regions were selected. Soils are defined as brown carbonate by the local Tajik definition system 
(13). Soils dominated by granodiorit mother rock are also situated in the study area. Typical values 
for SOC are 1-2%. CaCO3 contents vary between 2-30%, depending on the mother rock, and also 
the state of erosion (13). Rainfall distribution is similar in the whole area and rainfall is concen-
trated in the period from November through to April. Total rainfall is around 900 mm per year. 
Highest rainfall intensities are observed in late March and early April. The main crop is winter 
wheat, both on the land of state farms on the valley floor; and on hill slopes, where subsistence 
farmers cultivate land. The fields are prepared (ploughed or harrowed either by animal traction or 
with machinery) in November when the rain starts. The young wheat plants provide minimal vege-
tation cover during the heavy rains in March and April. Crop rotation (every 2-4 years) is carried out 
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with flax, chickpeas and beans. These crops are sown in late March and thus do not provide any 
vegetation cover during the spring rains. Thus, it is in March and April when inter-rill and rill erosion 
processes most affect the cropland. Grazing land is the predominant land use type in the foothills. 
It is often common land and its use is not regulated, leading to heavy degradation of grazing lands 
in the vicinity of the villages. 

MATERIALS 

Raster data 

The input data for spatial assessment consisted of a digital elevation model (DEM) calculated from 
Russian topographic maps (scale 1:50 000, contour distance 10 m) and ETM+ imagery from two 
different seasons. ETM+ imagery was the only readily available satellite imagery covering the 
study area. Despite its rather low spatial resolution, it was chosen for mapping land cover in an 
area dominated by small agricultural fields and a rugged terrain, in order to test its usefulness for 
preliminary studies. The state of maximum vegetation activity is represented by an image recorded 
on 24 May 2002 and the situation during the dry season (best visibility of bare ground) is repre-
sented by an image recorded on 22 August 2000. Image rectification was performed using GPS 
ground control points measured in the field and additional control points extracted from Russian 
topographic maps. Residuals in x direction were for both images on average 53 m, y-residuals 
amounted to 11 m for the image from 2002 and 20 m for the 2000 image data set (14). The atmos-
pheric correction of the geo-referenced images was conducted using ATCOR3 (15). The full data-
set consisted of bands 1, 2, 3, 4, 5 and 7, band indices 3/1 (iron oxide index) (16), the optimised 
soil adjusted vegetation index (OSAVI) (17), tasselled cap layers for brightness, greenness and 
wetness (18), each for both the ETM+ scenes, as well as the DEM products slope and curvature. 

Ground truth  

Ground truth data for the Faizabad test area were collected in early June 2004 and for the Varzob 
test area in early June 2005. For efficient sampling of the full variation of land cover and soil char-
acteristics over the study area, a ground survey campaign was conducted using a randomised sys-
tematic sampling scheme. Each test area covered an area of 10 km by 10 km and included 15 
clusters; where each individual cluster included 13 observation plots (see Figure 1). In this way, a 
total of 400 plots were sampled. The size of an observation plot was approximately 30 m by 30 m. 
The extent of the area with uniform land cover surrounding the observation plot was also recorded. 

The existence of visible signs of erosion processes in the field was noted as described by Stocking 
& Murnaghan (19). The following indicators for rill and inter-rill erosion were included: rills, pedes-
tals, armour layer, signs of splash effects caused by raindrops, plant/tree root exposure and tree 
mounds. As the severity of erosion resulted in poor separability, sample locations were separated 
into two classes only: sites with visible signs of erosion and those without signs of erosion. Topsoil 
(0-20 cm depth) and subsoil (20-50 cm depth) samples were collected from each sampling plot as 
composite or separate samples from two sampling pits, resulting in 1040 soil samples. 

Land cover characteristics, especially, fractional vegetation cover (FVC), were recorded at the 
stage of maximum vegetation activity after the spring rains, and in accordance with the FAO land 
cover classification system (LCCS) (20). 

METHODS 

Various statistical methods were used to: (i) Select the calibration data set with regard to spatial 
independence of observations, (ii) Predict SOC content from spectral readings by building a soil 
spectral library and (iii) Map field observations (soil erosion incidence, SOC and land cover types). 
To determine state and processes of soil degradation and conservation a hot-bright spot matrix 
was developed. 
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Building a soil spectral library for prediction of soil organic carbon (SOC) 

The soil spectral library for the prediction of SOC was established following the procedure de-
scribed by Shepherd & Walsh (11) that includes the following steps: (a) Sampling of soil variability 
within the target area, (b) Measuring of soil spectral reflectance, (c) Determination of a reference 
dataset based on the spectral data space, (d) Acquiring soil property data from soil chemical 
analysis for the reference dataset and (e) Calibrating of soil property data to spectra applying mul-
tivariate calibration methods. Soil spectral reflectance is measured under standard conditions in 
the laboratory. Air-dried and ground soil samples (2 mm) were filled into Duran glass petri-dishes 
and illuminated by a mug-light with a tungsten quartz halogen light source. Spectral reflectance 
data were measured with a FieldSpec PRO FR spectroradiometer (Analytical Spectral Devices 
Inc.). Measurements were recorded at wavelengths of 350 to 2500 nm at an interval of 1 nm. Pre-
processing of spectra included selection of wavelengths at every 10th nanometre and omitting 
bands with low signal to noise ratio. For scatter correction caused by differences in grain size, con-
tinuum removal was applied to the spectra (21). Based on representation in a principle component 
space, 254 samples were selected for soil chemical analysis. For SOC analysis, the samples were 
pre-treated with dilute HCl and subsequently analyzed by dry combustion using a Roboprep auto-
matic C/N analyzer (Europa Scientific, Crewe, UK). The resulting soil property data was then cali-
brated to the continuum removed spectra. For spectral libraries including inhomogeneous soil 
types, regression tree models, being nonparametric, proved to be superior to linear multivariate 
calibration approaches (22). Regression tree models were elaborated using the CART 5.0 software 
(23). In order to combine trees, bootstrap aggregation (bagging) was applied with the numbers of 
trees to be grown set to 100 as recommended by Steinberg and Colla (24). A total of 193 samples 
were used as calibration samples and 61 samples (30%) were selected as holdout samples and 
used for validation. 

Decision tree modelling for classification of satellite imagery 

In order to determine the minimal sampling distance at which spatial independence of observations 
can be expected, a semivariogram analysis of the predicted SOC content, of slope measured in 
the field and of OSAVI (May 2002 imagery) data extracted for each sampling point, was conducted. 
Independence was determined for sample points at a distance of 230 and more meters. This result 
is highly congruent for all three datasets (SOC content, slope and OSAVI values). Subsequently, 
10 samples per cluster were used as model input, and the remaining samples were used for vali-
dation. 

The cultivated plots on the hill slopes are often extremely small. During field sampling, 25% of the 
sample plots on cultivated land showed a uniform area around the sample plot that was smaller 

than 30 m  30 m. The area of 65% of the sample plots on cultivated land was between 

30 m  30 m and 100 m  100 m, and only 10% were recorded as being larger than 100 m  100 m 

(1 ha). Sample plots smaller than 30 m  30 m were excluded from land cover classification model-
ling, which improved modelling results considerably. Additional point information was extracted 
from the satellite image for the land cover types “aquatic” (n=33) and “settlement area” (n=43). 
These cover types can be easily distinguished visually on the image. 

Decision tree modelling, using machine learning algorithms for classification of remote sensing 
imagery, is a promising approach, because it is a nonparametric and hence does not require nor-
mal distribution of the histograms of raster information, in contrast to the widely applied maximum 
likelihood algorithm. Decision trees yield a set of rules which are easy to interpret and suitable for 
deriving a physical understanding of the classification process (25). Furthermore, rule-based clas-
sification allows ancillary data (e.g. topographic information) for incorporating, which can increase 
classification accuracy and precision (26). 

To establish relationships between reference data sets collected in the field (SOC content classes, 
soil erosion incidence and land cover types), and raster data (satellite imagery and topographic 
information as described above), information from raster data was extracted for each sampling 
point and pixel based calibrations were elaborated. Modelling was done using the software CART 
5.0 (23), which is based on binary recursive partitioning. In a decision tree estimation algorithm, 
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the most important component is the method used to estimate splits at each internal node of the 
tree (25). Results of Zambon et al. (27) indicated that the gini and the class probability splitting 
rules are the most appropriate for image classification. In this study the gini rule was applied. The 
best decision tree was determined using both cross validation and the validation sample sets as 
test sets. The resulting models were used for classification of the raster datasets and were imple-
mented using the knowledge classifier of ERDAS Imagine. 

Soil erosion classes “incidence of erosion present” versus “no incidence of erosion”; and SOC con-
tent classes “low” (≤1.1%) and “high” (>1.1%) were modelled. According to an assessment carried 
out in the same areas comparing SOC contents of soils not affected by soil erosion and soils 
showing various states of erosion, the threshold of 1.1% SOC corresponds with the threshold de-
termined between lightly and moderately eroded soils (28). For the SOC content model, the infor-
mation of band number 3 of ETM+ imagery was excluded from modelling, to avoid unwanted influ-
ences of red coloured soils from the granodiorite mother rock. The eight land cover types identified 
for modelling were: Aquatic area (rivers, streams); Settlement area; Annual cropland, Cropland 
with permanent grass and forbs (this type includes mainly fallow cropland); Land with dominant 
tree and shrub cover, Grazing land with herbaceous vegetation and FVC <30%, 30-75% and 
>75%, respectively. Decision trees often produce several final nodes, representing sub-categories 
of one single land cover type. These final nodes are expected to contain detailed land cover infor-
mation. The final nodes will subsequently be called land cover classes. 

All models were validated by determining producer’s and user’s accuracy as well as the percent-
age of correct classified samples for the validation sample set as described by Foody (29). 

Hot-bright spot matrix 

A simple approach, the hot-bright spot matrix, was developed to link the soil erosion incidence and 
the state of soil fertility for uniform land cover classes using spatial assessments. This approach 
also allows the mapping of different states of soil degradation and conservation. 

Land cover classes resulting from decision tree modelling were assumed to be uniform with regard to 
the state of the soil resources. In an initial step, the land cover classes were characterised by the field 
data - for each land cover class, percentages of samples with incidence of soil erosion (x-axis) and 
percentages of samples with high SOC content (y-axis) were plotted against each other in a scatter 
plot. In a second step, the same characterisation was conducted using the raster data. A GIS analysis 
was conducted to determine the overlaying areas between the elaborated land cover map and the soil 
incidence map on the one hand, and between the land cover map and the SOC content map on the 
other hand. The percentage of pixels per land cover class, classified as “erosion observed” and as 
“SOC content high” (SOC >1.1%), were derived (zonal statistic in ArcMap (ESRI Inc.)). For each land 
cover class, these percentages were then plotted against one another. 

If a specific land cover class shows incidence of soil erosion for less than 50% of the samples (or 
the area) only limited erosion is expected for this land cover class, whereas land cover classes 
with incidence of soil erosion in more than 50% of the samples (or the area) are considered to be 
subject to widespread erosion processes. The same approach was applied with regard to SOC 
content classes. The quarters of the scatter plot thus represent: (A) Bright spots of well conserved 
land characterised by a non-degraded state of soil resources (high SOC contents) and limited soil 
erosion processes, (B) Stable areas of land subject to other degradation processes (e.g. soil nutri-
ents exploitation) since SOC content is low but incidence of soil erosion is limited, (C) Degrading 
areas of land that may have been subject to land use changes and is characterised by a non-(i.e. 
not yet) degraded state of soil resources and widespread soil erosion processes and (D) Hot spots 
of degraded land, where SOC contents are already low and which is degrading further since ero-
sion processes are widespread. 

To produce hot-bright spot maps showing the four classes, namely, “hot spots”, “stable areas”, 
“degrading areas” and “bright spots”, the soil erosion incidence map and the SOC content map 
were simply combined using the combine function in ArcMap (ESRI Inc.). 
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Variation of SOC contents is expected to be high. 53 sample pairs collected from a single sampling 
plot separated by a distance of around 7 m showed that the mean coefficient of variation (CV) 
within fields is 23% for grazing land and 14% for annual and permanent cropland. To test whether 
differences in soil erosion incidence and SOC content between the four states of soil resources 
described by the hot-bright spot matrix were significant, the nonparametric Kruskal-Wallis test and 
the all-pairwise Connover test were carried out. Land cover classes belonging to different quarters 
of the hot-bright spot matrix were expected to show significant differences. Differences between 
the land cover classes were analysed based on field data (percentages of samples with soil ero-
sion incidence and with high SOC content). The same tests were also carried out for the hot-bright 
spot maps: soil erosion incidence data and continuous SOC content values of samples attributed 
to a specific class of the hot-bright spot map were tested for differences. For all tests the statistical 
significance level was defined as p ≤ 0.05. 

RESULTS AND DISCUSSION 

Soil spectral library for determining soil organic carbon (SOC) content 

Results from the calibration of soil spectral reflectance data and reference data from SOC chemi-
cal analysis are presented in Figure 2.  

 

Figure 2: Calibration of SOC to continuum removed spectra using regression tree modelling. 
Measured SOC contents plotted against predicted values for SOC. (Root mean square error for 
calibration (RMSEC) and validation (RMSEV) data, as well as coefficients of determination (R2) 
and numbers of samples (N) for calibration and validation data are displayed.) 

The coefficient of determination for the calibration sample set was R2=0.94 and for the validation 
sample set R2=0.71. The root mean square error for the calibration set (RMSEC) was 0.20 and for 
the validation set (RMSEV) it was 0.32. The rather big differences in R2 and root mean square er-
ror between the calibration and validation sets indicate some instability in the model. Additional 
calibration samples could help to improve model stability. Nevertheless, the results are promising 
with regard to applications of soil spectral libraries for land degradation assessments in the future. 

Soil erosion incidence map and SOC content map 

A very simple decision tree model was employed to distinguish between areas with and without 
incidence of erosion. From the 22 raster layers used as input variables, information derived from 
the slope raster layer, the OSAVI of May 2002 and the August 2000 image, were most effective in 
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separating the two states of erosion (see Figure 3, left side). For each variable, a splitting rule (a 
threshold), is determined by the model. A sample goes left if its value is below the threshold and to 
the right if its value is above. The most accurate model is the decision tree model with four final 
nodes. Three of the nodes classify samples showing no signs of erosion and one classifies sam-
ples with incidence of erosion. This shows that it is mainly factors controlling erosion that deter-
mine the soil erosion incidence model. The calibration data yielded 76% correctly classified sam-
ples, producer’s and user’s accuracy being 80 and 82% for erosion, and 69 and 67% for no ero-
sion. The validation data set yielded 73% correctly classified samples (producer’s accuracy and 
user’s accuracy being 80 and 76% for erosion, and 61 and 67% for no erosion). 

The SOC content class model is determined by 6 final nodes (Figure 3, right side). High OSAVI 
values on the ETM+ May 2002 imagery match with the well conserved soil resources, a fact that 
was observed in the soil erosion incidence model also. Tasselled cap brightness and wetness in-
formation derived from the ETM+ August 2000 imagery is subsequently decisive. It is not surpris-
ing that it is the image representing the dry season when sparse vegetation cover and high frac-
tions of barren soil prevail, which provides most valuable information for the SOC content model. 
The calibration data yielded 76% correctly classified samples; producer’s and user’s accuracy for 
low SOC content are 64 and 70%, and for high SOC content are 83 and 79%. The validation data 
set yielded 75% correctly classified samples (producer’s accuracy and user’s accuracy being 62 
and 72% for low SOC content, and 83 and 76% for high SOC content). 

Forty-six percent of the Faizabad test area and 68% of the Varzob test area are classified as 
showing incidence of erosion; 42% and 18% respectively, are classified as “without incidence of 
erosion”. The rest of the area (12% in Faizabad and 13% in Varzob) is aquatic or settlement area 
and is thus not included in the statistics. The difference in the level of erosion between the two test 
areas can be explained by a difference in their landforms: while around 20% of the area in Faiza-
bad is characterised by a wide and flat valley floor with slopes of 5-10%, almost the entire test area 
in Varzob is situated on slopes >10% (see also Figure 1). Analogous to the different erosion levels 
in the two test areas, there is a difference in area classified as having “high” SOC content (67% in 
Faizabad, and only 55% in Varzob). However, large areas in Varzob, showing a low SOC content 
are situated along the higher mountain ranges in the North, where stony soils prevail, while in Fai-
zabad low SOC content areas are close to the villages at medium altitude, where it can be as-
sumed that the original fertile brown soils have been depleted. 

 

Figure 3: Tree models for mapping eroson incidence (left side) and SOC content classes low (SOC 
≤1.1%) and high (SOC >1.1%) (right side). For each splitting node, number (N) of calibration / vali-
dation samples and ideal splitter are indicated. For each final node, number (N) of calibration / 
validation samples and proportion of correctly classified samples for the calibration / validation sets 
are provided. The abbreviations for input variables used are: ETM May (Landsat 7 scene from May 
2002 imagery), ETM Aug (Landsat 7 scene from August 2000 imagery), B5 (band 5), OSAVI 
(OSAVI), brightness (tasselled cap band 1), wetness (tasselled cap band 3), and slope (slope 
raster information). 
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Land cover classification 

The result of the land cover classification is a decision tree with 19 final nodes. Band 4 of the May 
2002 image allows splitting off aquatic area and grazing land with low fractional vegetation cover 
(FVC), showing river sediments and soils with high amounts of iron oxides. The iron oxide index 
from the August 2000 image singles out the settlement area, which is dominated by tin roofs. The 
rest of the samples are classified by the OSAVI information derived from the August 2000 and the 
May 2002 imagery into groups characterised by seasonality of FVC. On a more detailed level of 
the decision tree, slope steepness is also a critical parameter. Three slope categories were identi-
fied by the land cover decision tree model: ≤ 16%, 17-36% and >36%. Further, band 3 of the May 
2002 image is ideal to distinguish between areas showing different percentages of bare soil. Ta-
ble 1 provides details on accuracies determined from the validation data set. Accuracy levels for 
predicted land cover types are low, but overall land use types such as, “cropland”, “grazing land”, 
“settlement” and “aquatic area”, were identified at an acceptable level of accuracy, with producer’s 
accuracies ranging from 65% for grazing land to 89% for aquatic areas, and user’s accuracies 
ranging from 53% for cropland to 100% for aquatic areas. 72% of the validation samples were cor-
rectly classified. 

Furthermore, the final nodes of the decision tree model provide useful information on seasonality 
and FVC. These final nodes, the land cover classes, are used for further analysis. Validation of 
these land cover classes is difficult; the size of the validation data set should be considerably large 
to validate the large number of land cover classes (19 in this case). 

Table 1: Accuracy assessment of land cover classification based on the validation set, containing 
samples from test areas Faizabad and Varzob. Columns represent reference data and rows repre-
sent classification data. 
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Aquatic areas 16 1 1      18 94% 89% 

Cropland annual  5 1 3  2 2  13 50% 38% 

Cropland perennial  3 3 1 1 2   10 25% 10% 

Cropland trees and shrubs   1 1     2 8% 50% 

Grazing land FVC <30%     1    1 17% 100% 

Grazing land FVC 30-75%   5 2 4 5 2  18 42% 28% 

Grazing land FVC >75%  1 1 2  3 5  12 56% 42% 

Settlement 1   3    8 12 100% 67% 

Column total 17 10 12 12 6 12 9 8 86   

 

Major land use types 

Overall accuracy: 72% 

Aquatic 
areas 

Cropland 
Grazing 

Land 
Settle-
ment 

Row 
total 

Prod. 
acc. 

User’s 
acc. 

Aquatic areas 16 2   18 94% 89% 

Cropland  18 7  25 53% 72% 

Grazing land  11 20  31 74% 65% 

Settlement 1 3  8 12 100% 67% 

Column total 17 34 27 8 86   

Abbreviations are defined as follows: C = cropland, G = grazing land, FVC= fractional vegetation 
cover 
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Hot-bright spot matrix - state and processes of soil degradation for specific land cover classes 

In order to understand the impact of soil erosion on soil fertility with regard to local land use / land 
cover types the hot-bright spot matrix was assessed (Figure 4). The scatter plot on the left displays 
the land cover classes as characterised by the field data, while the scatter plot on the right shows 
information derived from the elaborated raster layers (extent of analysis being the test areas of 
Faizabad and Varzob). The comparison of the two scatter plots, together with the results of the 
Kruskal-Wallis and all-pairwise Connover test, makes it possible to identify land cover classes, 
from which substantial conclusions can be derived. 

Depending on whether the assessment is based on field or raster data, five land cover classes 
have distinct differences in the soil erosion incidence and SOC content characteristics (nodes 8, 
12, 13, 17, 18, circled red in Figure 4 below). The results of the Kruskal-Wallis and subsequent all-
pairwise Connover test also show that for these five classes, p-values in most cases are greater 
than 0.05; hence the land cover classes cannot be distinguished from one another. These classes 
were excluded from further analysis. However, the area coverage of the five land cover classes 
together adds up to only 16%. Therefore the effect on the succeeding assessment is relatively 
small. 

 

Figure 4: Hot-bright spot matrix for land cover classes characterised by field data (left side) and by 
raster data (right side). For each land cover class, percentage of samples / pixels showing inci-
dence of erosion was plotted versus percentage of samples / pixels classified as “high SOC con-
tent”. Land cover classes falling into different quarters are circled red. A: bright spots, B: stable 
areas, C: degrading areas, and D: hot spots. 

For most other land cover classes, the application of the hot-bright spot matrix did allow for defini-
tive conclusions; this is confirmed by the results of the Kruskal-Wallis and the subsequently con-
ducted all-pairwise Conover tests. The land cover classes situated in quarter A (bright spots) are 
well distinguished, as their SOC content is significantly different from that of land cover classes 
situated in quarter B (stable areas) or D (hot spots). With regard to erosion, bright spots differ sig-
nificantly from the degrading areas and also from the land cover class “grazing land with FVC 
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<30%” classified as hot spot (node 14). On the other hand, the difference from annual cropland 
also classified as hot spot (node 3) is not pronounced, but still identifiable for nodes 19 and 10 
(p ≤ 0.09). In this study, hot spots are generally not very well distinguishable; neither does their 
SOC content differ significantly from that of land cover classes classified as degrading areas 
(p = 0.06-0.46), nor is the difference in soil erosion incidence significant between hot pots and sta-
ble areas. Test results for the land cover classes identified as stable areas show that grazing land 
with FVC 30-75% (node 5) differs significantly from the other classes, but perennial cropland (node 
6) does not. 

In the scatter plot based on raster data, the different land cover classes are concentrated to a high 
degree in the respective corners of the matrix, and are therefore well distinguishable. This can be 
attributed to the fact that OSAVI information plays an important role in all 3 models (soil erosion 
incidence, SOC content level and land cover). Thus tendencies with regard to FVC in the field data 
are more pronounced in the raster data. 

Seasonal vegetation characteristics, together with slope, provide strong explanatory factors for 
erosion incidence and SOC content. Land cover classes with high FVC during the time of high 
vegetation activity (May), and moderate FVC during the dry season (August), show the lowest per-
centage of area with erosion and highest with high SOC content (nodes 10, 16-19). Also, cropland 
situated on flat areas in the valley floor showing no erosion incidence is classified as conserved 
land (node 4). Of most concern are, on the one hand, areas with perennial vegetation but year 
round low FVC, often situated on steep slopes (nodes 11 and 14); and on the other hand, annual 
cropland with high seasonal changes in FVC (node 3) and perennial cropland, showing seasonal 
changes in FVC (node 9). Included in node 9 are degraded cropland areas now left fallow, but with 
no vegetation cover developing and thus being subjected to further degradation by erosion. In con-
trast, croplands with perennial vegetation showing at least seasonally high FVC are classified as 
stable areas (node 6). The fact that prevalence of erosion is low indicates that the perennial vege-
tation is effective in reducing erosion processes. Land cover classes, where soil fertility is high but 
where widespread soil erosion may strongly affect soil fertility, are grazing areas on steep slopes 
with moderate FVC (node 11). Also classified as degrading areas, are areas with permanent tree 
and shrub cover with seasonal changes in FVC (node 7), which include heavily grazed rangelands 
and possibly intercropping systems. Among the grazing land classes, classes with FVC<75% 
(nodes 2, 5, 11 and 14) are at least as much or more prone to erosion and show significantly lower 
SOC content than classes with FVC>75% (nodes 10 and 16). Steepness is a crucial factor, espe-
cially on grazing land, as the differences between nodes 5 and 11 show. 

The most important land cover class showing high erosion and low SOC content is perennial crop-
land (fallow land), described by node 9. According to the zonal statistics, this class accounts for 
29% land cover in the Varzob test area and for 13% in Faizabad. This reflects the often mentioned 
degradation of soil resources by cultivation of lands susceptible to erosion, and the subsequent 
abandonment of degraded fields. With regard to areas showing low erosion incidence and high 
SOC content, the permanent tree and shrub cover (node 19) and grazing land with FVC > 75% 
(nodes 10 and 16) dominate. These land cover types account for 10% of the test areas. The rela-
tively high percentage of areas with permanent tree and shrub cover (node 19 covers 6% of the 
area) shows that in many cases afforestations and implementation of orchards has been very suc-
cessful. 

Thus, with regard to the impact of erosion on soil fertility the following major results have been ob-
tained for the two test areas: There are indications that on cropland, SOC content may fall drasti-
cally if erosion passes a certain level, which can be concluded by comparing node 4 with nodes 3 
and 9. This is most likely if seasonal fluctuations in FVC are high, indicating that FVC is not suffi-
cient to prevent serious impact of erosion on soil fertility, especially in periods of highly erosive 
rainstorms (node 3). Reclamation of land is a slow process. Even if erosion processes are not ob-
served any more on abandoned fields, SOC content remains low (node 6). For grazing land, slope 
seems to be an important factor for erosion incidence, but not for differences in SOC content. If a 
high FVC (FVC>75%) can be maintained on grazing land, SOC content is likely to remain high 
even if there is some incidence of erosion. While afforestation and establishment of fruit orchards 
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transformed many dry areas into well conserved land, especially on steep slopes, these projects 
have in some cases not been successfully implemented or maintained and may even have caused 
adverse effects (node 7). Thus, plot specific soil conservation technologies and continuous efforts 
are crucial for such projects. 

Hot-bright spot maps 

Kruskal-Wallis tests based on field data (the validation sample set consisting of 84 samples) con-
firmed significant differences between the different states of degradation, but they also revealed 
classes which do not allow differentiation. The SOC content of samples from different classes of 
the hot-bright spot matrix were significantly different, with p≤ 0.05 for all comparisons, except for 
the classes “degrading” and “stable” (p=0.067). P-values for soil erosion incidence were between p 
≤ 0.0001 for comparison of classes “bright” and “degrading”, p=0.023 for “bright” and “hot”, 
p=0.310 for “stable” and “degrading” and p=0.927 for “hot” and “stable”. From these results, one 
can conclude that the simple approach presented here allows clear differentiation between the hot 
and bright spots. More detailed class distinction requires more reliable information on soil erosion. 
Since topographic information is available at a more appropriate resolution than satellite imagery, 
improved results are likely to be achieved by increasing efforts in modelling topographic factors. 

 

Figure 5: The combination of the soil erosion incidence map and the SOC content class map show-
ing bright spots (dark green), stable areas (light green), degrading areas (light red) and hot spots 
(red) for test areas Varzob (left) and Faizabad (right). (Blue areas on the ridges in the Northern 
parts of Faizabad test area, are grazing land misclassified as aquatic areas). 

Distinct patterns with regard to the distribution of hot and bright spots can be distinguished from 
Figure 5. Hot spots and degrading areas are wide-spread over the whole Varzob test area. The 
strip of land classified as hot spot along the Northern boundary of the test area is, however, deter-
mined by natural conditions, which are characterised by a mountainous area and stony soils. On 
the other hand, well distinguishable larger patches of bright spots, representing the afforestation 
mentioned above, can also be identified in various parts of the test area, showing that this conser-
vation measure has been successful on different slopes and in different expositions. In the Faiza-
bad test area, the well conserved annual cropland along the river in the valley floor is well recog-
nisable. Villages are situated at the foot of the hill slopes. Many of the hill slopes in the vicinity of 
the villages are hot spots which can be linked to the intensive use of these areas during the 1990s. 
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However, there are some hill ranges which are classified as bright spots, representing afforesta-
tions and fruit orchards in the Faizabad area. 

CONCLUSIONS 

SOC content information available at a relatively high spatial density is crucial for establishing a 
model, which allows the mapping of SOC content classes, based on satellite imagery and ancillary 
raster data. Prediction of SOC for a high number of samples in a cost effective way was achieved 
by establishing a soil spectral library for the study area. The coefficient of determination for the 
SOC model is R2=0.71, and the root mean square error of validation RMSEV=0.32, which can be 
considered a sufficient level of accuracy for soil degradation assessments. For future assessments 
in the Tajik foothills, the spectral library elaborated would facilitate rapid and cost effective predic-
tions of SOC from soil reflectance readings.  

This study showed that in an area where difficult terrain and small cultivated plots prevailed, a spa-
tial assessment of incidence of soil erosion, SOC content and land cover, based on a multi-date 
composite of Landsat ETM+ imagery and topographic information is possible at a rather low level 
of accuracy, acceptable for preliminary studies. Even though land cover types at a high level of 
detail were not detected accurately, the final nodes of the decision tree model for land cover classi-
fication contributed very useful information on seasonality and fractional vegetation cover (FVC) for 
the sites reflected by the specific node. Thus, machine learning algorithms for building decision 
trees have been very helpful in extracting information from satellite imagery, especially for areas 
where land cover types may be highly in-homogenous. Especially in such conditions, further re-
search on this alternative approach for classification of satellite imagery should be conducted. 

The hot-bright spot matrix developed for this study is a simple approach, allowing soil erosion in-
formation to be linked with soil fertility indicators in a flexible manner, since it may be used at vari-
ous spatial resolutions and for either raster derived data (as in this study) or for field data. The ap-
proach helps to gain a better understanding of the impact of soil erosion on soil fertility for land 
cover classes present in a study area and to identify hot spots and bright spots in a spatially ex-
plicit manner. 

The preliminary assessment of the impact of erosion on soil fertility in the study area has proved 
helpful for focusing conservation efforts to specific land cover types. The results show distinctly 
lower SOC content levels on large parts of the test areas (around 20% of the area), where annual 
crop cultivation was dominant in the 1990s and where cultivation has now been abandoned. On 
the other hand, there are strong indications that afforestations and fruit orchards established in the 
1980s have been successful in conserving soil resources. 
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