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ABSTRACT 
The paper presents the methods and first results of vegetation mapping, using field and hyper-
spectral airborne data in high mountain ecosystems. The research also aims at a comparison of 
different remote sensing methods of vegetation classification and at creating a map of actual vege-
tation. 
The study was carried on in the Tatra National Park – encompassing subalpine, alpine and subni-
val belts of the Tatra Mountains. The results of the ground mapping and different image classifica-
tion approaches were compared. 
Maximum likelihood classification method is widely used in many remote sensing applications and 
can be considered one of the most popular and reliable techniques. Neural network classification is 
based on training during a training phase, and the proper classification. The training process is 
based on determining the neural connection weights to make the output signal from the network as 
close as possible to the expected result. One of the goals was to verify the usefulness of neural 
networks for classification and to obtain the best results in vegetation recognising using airborne 
hyperspectral imagery. 
For validation of the DAIS and ROSIS image classifications, a detailed large-scale vegetation map 
was prepared, using traditional field mapping. 
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INTRODUCTION 
Vegetation cover is a perfect indicator of environmental conditions and should be well recognised 
and mapped. This is possible using hyperspectral data, which provides high spectral, spatial and 
radiometric resolution. Furthermore, the application of such data in inaccessible mountainous envi-
ronments is much more effective than traditional field mapping.  
Mountain plants have developed specific adaptations to survive at the fringe of life e.g.: pigment 
content, plant tissue structure, etc. These adaptations have direct impact on reflectance, which can 
be quantified using hyperspectral imagery (1,2).  
This paper presents the method and first achievements of vegetation mapping, using field and hy-
perspectal airborne data of the DAIS 7915 and ROSIS sensors. The research aims at a compari-
son of different remote sensing vegetation classification methods. For validation of hyperspectral 
imagery 14 key areas with different plant communities, located in different topographic situations, 
were prepared to allow a detailed, large-scale actual vegetation map to be made at a scale of 
1:10 000. The map was prepared in a traditional way using field mapping and typological Braun-
Blanquet approach (3). 
The test area encompasses subalpine, alpine and subnival belts of the High Tatra Mountains in the 
eastern part of the Tatra National Park in Poland. 
Imagery used in the study was acquired by two sensors. The first sensor, DAIS, covers the spec-
tral region from 400 to 12600 nm, using 79 narrow bands. Depending on flight altitude, the pixel 
size of the image can be from 3 to 20 metres. The second spectrometer, ROSIS, acquires data in 
115 spectral bands ranging from 430 to 850 nm. Spatial resolution can vary from 1 to 6 metres de-
pending on the flight altitude (4). 
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Hyperspectral data can be used to precisely identify many objects. This can be achieved using 
many classification approaches, like different types of supervised classification or neural network 
approach. Some of the methods are described in this paper. 

Study area 
The Tatra Mountains (the Tatras), although relatively small, constitute the highest part of Carpa-
thian range, and are the highest mountain range between the Alps and the Caucasus. The total 
area of the Tatras is 785 km2, of which 22.3% is located in Poland (5). The Tatras are divided into 
two main parts: West and High Tatras. The first part is built of igneous rocks (mainly granitoids), 
and is therefore higher than the second part which is built of softer, mainly calcareous rock (6).  
The study area is located in one of the main valleys of the High Tatras – Dolina Gasienicowa (Fig-
ure 1). It includes subalpine, alpine and subnival vegetation belts, where geological substratum 
(calcareous or silicate rocks) together with climatic changes connected with altitude, determine the 
differentiation of plant communities (7). The subnival belt is characterised by bare rocks and very 
sparse vegetation, composed mainly by lichens (e.g. Rhizocarpon geographicum) and sparse 
swards (Oreochloetum distichae subnivale). In the alpine belt, on the siliceous rocks, Oreochloo 
distichae-Juncetum trifidi has developed as the climax association. Swards belonging to the Fes-
tuco versicoloris-Seslerietum tatrae community grow in a small part of the area on calcareous 
rocks. In both vegetation belts, scree vegetation and snow-bed vegetation are represented as well. 
Avalanche meadows (Calamagrostietum villosae tatricum) occur on steep slopes. In the subalpine 
belt, Pinetum mughi carpaticum is the main community. Depending on the geological substratum 
two subassociations can be distinguished: Pinetum mughi carpaticum silicicolum on siliceous rocks 
and Pinetum mughi carpaticum calcicolum in the calcareous biotopes (7). 

Figure 1: The study area of the High Tatras 

METHODS 
Field vegetation mapping 
Vegetation mapping in field demands application of complementary research methods from both  
phytocenology and geoecology. This includes an initial phytocenological reconnaissance on the 
basis of existing materials, and then determination of the list of dominant plant species and com-
munities. Vegetation units delimited on the maps comply with the Braun-Blanquet approach and 
include associations, subassociations, local forms and spatial complexes of communities. Usually 
the rank of association is at the basic level, but in case of zonal communities occurring on large 
surfaces, it can be at a level of subassociations or local forms and spatial complexes of communi-
ties. Smaller, heterogeneous areas were joined into higher classification units (alliance, order or 
class). After that a detailed vegetation map was prepared at a scale of 1:10 000. The key legend of 
the actual vegetation map (8) consists of 42 units. They are assembled into ecological groups:  

• cryptogamic plant communities on scree - initial phase;  
• epilitic lichen communities (Rhizocarpetalia); 
• scree communities (Androsacetalia alpinae);  
• snow-bed communities (Luzuletum alpino-pilosae, Salicetum herbaceae); 
• subnival swards (Oreochloo distichae-Juncetum trifidi subnivale form); 
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• alpine swards on silicate substrate (Oreochloo distichae-Juncetum trifidi) differentiated into 
some subassociations and forms: typicum, cetrarietosum, sphagnetosum, salicetosum her-
baceae, salicetosum kitaibelianae, caricetosum sempervirentis, subalpine anthropogenic 
form, scree form with Juncus trifidus and spatial complexes with other communities 

• alpine swards on mylonite and limestone substrate (Festuco versicoloris-Agrostietum alpi-
nae); 

• peaty and boggy communities (Caricetum fuscae subalpinum, Sphagno-Nardetum, Poly-
tricho-Nardetum); 

• avalanche meadows (Calamagrostietum villosae tatricum); 
• tall herb communities (Adenostylion); 
• grassland communities after grazing (Festuca picta community, Deschampsia flexuosa 

community, Hieracio alpini-Nardetum); 
• mountain pine shrubs (Pinetum mugho carpaticum) 

Preprocessing 
Data used in this study was acquired on the 4th of August 2002 at 10:30 a.m. At this time of the 
day the sun elevation was 38° and sun azimuth was 145°. During the overflight 6 lines of DAIS and 
ROSIS images were acquired, of which 2 were taken additionally due to unfavourable atmospheric 
conditions. One line of ROSIS data was lost after some unexpected technical problems. Finally, 4 
lines of DAIS and 3 lines of ROSIS data were used.  
Each line of DAIS data covers an area of approximately 25 km2 (2.5 km x 10 km). Due to large 
overlap areas the images cover about 35 km2 (3.5 km x 10 km) in total. A line of ROSIS data is 
smaller and covers an area of 5.6 km2 (0.8 km x 7 km) approximately. In the study a mosaic was 
used, composed of 3 ROSIS images covering an area of about 15 km2. 
For the geometric correction of image data the PARGE (PARametric GEocoding) software was 
used. The software, developed at the University of Zurich specially for correcting airborne imaging 
spectrometer data, applies parametric geocoding using high precision flight parameters (like an 
exact position of the aircraft and its attitude angles) for every line. If used with a digital elevation 
model of high accuracy, PARGE can give very accurate results (9). 
DAIS data used in this study was geometrically corrected using all required parameters: GPS 
(Global Positioning System), INS (Inertial Navigation System), DEM (Digital Elevation Model) cre-
ated from digitised contour lines, and several GCPs (Ground Control Points) of high accuracy. Dur-
ing this process the data was registered to the UTM coordinate system using the Nearest 
Neighbour resampling method that retains original data values. The resulting pixel size is 3 metres, 
with a geometric accuracy within 2 pixels. 
Unfortunately, the procedure described above could not be applied to ROSIS data because of 
technical problems during data acquisition and missing parameters. Another approach had to be 
used employing polynomial transformation based on the large number of GCPs and the Digital 
Elevation Model. The data was also registered to UTM coordinate system using the same resam-
pling method. Pixel size of the final image is 1 m. Since the geometric correction of ROSIS was not 
done by the authors themselves, the accuracy was not investigated thoroughly. Nevertheless, a 
comparison with DAIS and topographic data does not show any unacceptable geometric errors, 
which could prevent further analysis.  
Atmospheric correction was performed on the DAIS data using ATCOR4 (ATmospheric CORrec-
tion) software, which includes a database of correction functions based on the MODTRAN4 radia-
tive transfer code (10). During this process the data values were changed from radiance to reflec-
tance, removing in this way the influence of the atmosphere on the data.  
ROSIS data were not atmospherically corrected and were used as recorded.  
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RESULTS 
Hyperspectral data consist of a high number of narrow and continuous bands and offering identifi-
cation of particular features. A small range of each of them allows precise differentiation between 
many objects based on their unique spectral properties. A high number of channels is also the rea-
son of between-band correlation, causing information redundancy. One of the most important 
stages in the analysis process is to reduce the number of bands to a minimum that will still provide 
optimal classification run. Choosing adequate ranges allows nuances in different land cover types 
to be identified and mapped. Thenkabail et al. (11) indicated 12 wavebands between 400 and 1100 
nm that are quite important from the point of view of distinguishing different kinds of cereals. Some 
spectral ranges were indicated for identification of tree species (12) and for analysing vegetation 
conditions (2). Results of these studies, however, cannot be extrapolated to other areas, because 
specific growth conditions cause spectral characteristic changes even within the same species. 
Mapping of high mountains plant communities is even more challenging because of very frag-
mented landscapes and very diverse reliefs. This type of analysis demands an optimal spectral 
band set.  
Spectral reflectance data adequate for classification were chosen based on the spectral curves 
derived from the DAIS image, which made it possible to avoid water absorption bands and chan-
nels with significant errors or noise. For further analysis 14 spectral bands were chosen. Their 
characteristics are listed in Table 1. Additionally, a temperature band was added as the 15th band. 
This band was created by converting the radiant temperature measured by the DAIS sensor to the 
absolute temperature in degrees Celsius. Information about surface temperature can be very use-
ful when analysing vegetation (13).  

Table 1: Spectral characteristics of DAIS bands used during the study 

band number centre wavelength /nm band number centre wavelength /nm 

  1 
  4 
  8 
  9 
12 
13 
17 

0.502 
0.554 
0.625 
0.641 
0.695 
0.711 
0.783 

22 
24 
26 
33 
34 
78 
79 

 0.873 
 0.906 
 0.939 
 1.542 
 1.573 
 11.636 
 12.278 

 
To reduce data dimensionality and avoid information redundancy, a Principal Component Analysis 
(PCA) procedure was applied. This is a mathematical process that transforms correlated bands 
into a new image set of uncorrelated principal components. All image bands that were not rejected 
during the previous stage, were transformed into PCA space. Upon analysis of the information 
contained in the new data set, only 6 first bands (i.e. from PC1 to PC6) representing about 99% of 
the original image information were chosen for the next step.  
Image classification can be done in an unsupervised or supervised manner. Unsupervised classifi-
cation is based on assigning pixels to a given number of classes that are spectrally homogeneous 
and not taking into account any additional information about the analysed region. Users define only 
the number of classes. Their names are defined after the whole process. Results of this approach 
depend on spectral characteristics of the data. On the contrary, supervised classification depends 
on the user and his knowledge. The user defines pixels representing land cover elements on the 
basis of different data and information available,. The class types and names have to be defined 
before the classification starts. 
One of the characteristics of vegetation is its variable reflectance: identification of some communi-
ties may be difficult using only spectral properties. Vegetation reflectance registered by remote 
sensing instruments is the average of the reflectance of photosynthetically active parts, non-
photosynthetically active parts (i.e. branches, dry leaves), shadow and ground. These elements, 
being an integral part of plant communities, impede their recognition in case of assuming their 
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spectral properties. Thus, it is obvious, that vegetation can be characterised by a high variability of 
the signal and therefore the statistical distribution of reflectance differs from the normal distribution. 

Supervised classification  
The first step during the supervised classification process was to choose the number of classes 
that should be discriminated and then to create spectral signatures of land cover types under in-
vestigation. This was done based on a visual analysis of the image and on the results of unsuper-
vised classification that was performed earlier. Seven main classes were defined: mountain pine 
shrubs, forests, meadows, rocks, lakes, shadows and tourist routes. Training areas for each class 
contained a minimum of 50 pixels and the signatures were calculated as an average of pixel val-
ues of a given cover type taken from different parts of the image.  
The classification results were compared with the vegetation map of the area. The map, at scale 
1:10 000, was created as an outcome of detailed terrain mapping carried out in recent years in Ta-
tra Mountains (8). Classification results were also compared with the unclassified image. Both data 
sources were used for accuracy assessment and Kappa coefficient calculation.  
The output of unsupervised classification that was made as the reconnaissance before the main 
classification process, did not show satisfactory result. Many areas of the same land cover type, 
even if they were spectrally very different, were assigned to improper classes. For example, some 
pixels that are in fact meadow pixels, were assigned to the forest class, and vice versa. These 
misclassifications could be a result of vegetation complexity and high fragmentation of mountain 
landscape. The unsupervised classification method is too simple to reveal the differences in vege-
tation cover, and therefore is not suitable for mountain vegetation analyses.  
In case of supervised classification the results were much better. The best outcome was produced 
with the maximum likelihood algorithm (Figure 2). The overall accuracy was 78%: the poorest re-
sult was noted for rocks and tourist routes (about 40% accuracy), while the best results were ob-
tained for lakes and meadows (90 – 100% accuracy).   
 

 
Figure 2: The results of the DAIS 7915 image classification using the maximum likelihood algo-
rithm. The map is overlayed by the contours of the actual vegetation. 
An attempt was also made to increase the number of class definitions by dividing the seven main 
land cover types into more detailed subclasses. Finally, 18 classes were created, and the classifi-
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cation process with the maximum likelihood algorithm was repeated. However, it gave much poorer 
results than in case of 7 classes - the specific subclasses were indistinguishable. More detailed 
division (into different soil moisture, aspect, altitude, etc.) requires further investigation.  
Another attempt was made with data after PCA transformation. As mentioned above, 6 first princi-
pal components were used (from PC1 to PC6). The result of a supervised classification over PCA-
derived image did not show good results. An overall accuracy of 71% was achieved, with the poor-
est results in case of forests and meadows (20-56%) and the best results in case of lakes and pine 
shrubs (83-100%). Errors were mainly connected with the incorrect classification of meadows pix-
els. They were assigned to mountain pine and rock classes, causing inaccuracies. Problems arose 
also in areas of shadow.  
All the problems mentioned above were caused by high spectral diversity of different land cover 
types in the researched area. Moreover, the selection of data bands used for the classification 
process can probably be improved. High mountain vegetation identification and mapping require 
very specific spectral ranges. On the other hand, vegetation analysis should not be done as an 
automatic process for all of the plant communities, but rather for each of them independently. Also 
providing additional information, such as texture, would be a good idea.  

Artificial Neural Network Classification 
Traditional classification, that uses parametrical approaches (like maximum likelihood approach), 
does not show satisfying results. A method that uses artificial neural networks does not depend on 
statistical parameters of a particular class and hence makes it possible to include texture informa-
tion as additional data. This method may be especially useful to separate and classify vegetation 
communities.  
Texture is one of the main characteristics used in the visual interpretation of an image. Adding this 
information to automatic classification processes is possible both for the Artificial Neural Network 
(ANN) approach and for more traditional methods like the Maximum Likelihood (ML) classification. 
The main difference is the additional error, which is introduced due to the χ2 distribution character-
istic of textural data in the case of the ML classification. To avoid this problem it is favourable to 
use non-parametric methods of classification, like ANN. 
To classify land cover types for the ROSIS scanner image, we applied a multilayer, one-directional 
network, trained using a supervised method of back-propagation. The Stuttgart Neural Network 
Simulator (SNNS) was used for that purpose. This software was developed at the University of 
Stuttgart and is available for free on the internet (14). 
To assess the usefulness of the artificial neural network classification approach, many tests were 
performed for the cover type of mountain pine. In the first stage, training was limited only to this 
single class due to the great deal of time that was needed to accomplish this task. Mountain pine 
was used because it is very common in the study area. It was assumed that the ANN structure that 
showed the highest classification accuracy for the mountain pine class, should also provide good 
results for the other cover types (Figures 3, 4) (15).  

Table 1: Mountain pine classification errors.  

Threshold 0.3 0.4 0.5 0.6 0.7 0.8 

Hidden layer 3x3 15.35% 15.13% 14.55% 14.85% 16.95% 17.18% 

Hidden layer 5x5 15.97% 15.08% 14.89% 15,65% 17.82% 17.85% 

 
The evaluations of the results were conducted using a point-to-point comparison with an actual 
vegetation map of the High Tatras. Table 1 presents the results obtained from the comparison of 
different maps generated by neural network classification with different hidden layers and threshold 
values. The error varies between 15 and 18% and is below 15% for the best combination. 
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Figure 3: DAIS 7915 image classification using ANN algorithm. Upper left image presents the ref-
erence map of the mountain pine shrubs (white areas). Rest of the images present the comparison 
of the classifications with different threshold values (0.2-0.6).  

 
Figure 4: Comparison of the terrain mapping (right) and the DAIS 7915 image classification (left) 
using the ANN algorithm. Colours represent different land cover  

CONCLUSIONS 
Hyperspectral remote sensing techniques show a potential for vegetation mapping in mountainous 
areas and mapping at large scales. Combination of field remote sensing techniques and hyper-
spectral DAIS 7915 and Rosis imagery allow plant habitats and most of the investigated vegetation 
units to be recognized (research and mapping). However, the different classifications approaches 
themselves, without using additional data, do not give satisfactory results yet. The methods de-
scribed above need to be modified and adjusted in a way that will allow more precise and accurate 
vegetation mapping. Such a way could be an approach that takes into account only one cover type 
at a time. Another could be adding auxiliary data, such as texture, to the classification process.  
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More attention should also be given to the other classification methods, specifically to the hyper-
spectral data, like Spectral Angle Mapping, Linear Spectral Unmixing, etc. This kind of image clas-
sification allows fuzzy borders between different land cover types, which corresponds to reality. 
These methods should also be tested in detail.  
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