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ABSTRACT 
Vegetation monitoring is an important tool in the evaluation of nature management in the coastal 
zone of The Netherlands. Remote sensing images are valuable in order to investigate spatio-
temporal changes in the vegetation. A classification method has been developed based on air-
borne hyperspectral data, which were acquired using the GER EPS-A scanner. A supervised clas-
sification method has been used applying the Spectral Angle Mapper, in combination with an ex-
pert system. The SAM algorithm determines the similarity between spectra of different vegetation 
types. The expert system adds extra information about environmental conditions to the classifica-
tion in order to improve the discrimination of vegetation types, which are otherwise spectrally diffi-
cult to identify. In our case, this method gives the opportunity for rapid classification with an overall 
accuracy of 60-70%. 
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INTRODUCTION 
The Dutch coastal dunes belong to the most extensive protected nature areas of The Netherlands. 
For several decades many dune areas have been subject to decreasing biodiversity in flora and 
fauna due to acidification, eutrophication and prolonged desiccation which are primarily caused by 
water abstraction, atmospheric deposition of nitrogen, and reduced pasture (1,2). These changes 
lead to acceleration of the vegetation succession, and domination of species-poor roughs and 
scrub over species-rich pioneer vegetation and dune grasslands (3). In order to maintain biodiver-
sity and restore threatened vegetation, nature managers have applied a number of management 
measures. These require accurate monitoring systems to investigate autonomous vegetation de-
velopment and to evaluate the effect of nature management.  

The use of remote sensing images is not new in dune vegetation research (4,5). Currently, the 
monitoring of vegetation development is based on sequential manual mapping of vegetation struc-
tures seen from aerial false colour photos and fieldwork (6,7). This method is both cost- and la-
bour-intensive. Furthermore, manual aerial photo interpretation and digitising both incur errors in 
the geometric and thematic accuracy. With regard to dry dune areas a (semi)automatic processing 
method has been developed for the classification of vegetation structures from false colour photos 
(8). This method is used for deriving vegetation maps with the purpose of monitoring the effects of 
cattle grazing (9). 

The Survey Department of the Ministry of Transport, Public Works and Water Management con-
ducts research in applying innovative measurement methods with the aim of obtaining a more de-
tailed, objective and efficient vegetation monitoring system (10,11).  
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DATA 
For this research hyperspectral data has been collected from the Amsterdam Water Supply Dunes 
(AWD), one of the ecologically most complex dune areas of The Netherlands. It is situated along 
the central part of the Dutch coastal shoreline, south of Zandvoort (Figure 1). The selected area 
within the AWD includes the full range of dune landscapes (12), i.e. the transition from Old dune 
systems (3000 – 500 years BC) to Young dune systems (1000 years AD – present) ending at the 
beach coastline. The hyperspectral scan describes an area of approximately 5 km × 2 km, which is 
more or less 30% of the total area of the AWD. Field data has been collected for classification pur-
poses and for validation of the classification. In the following subsections the two datasets, that is 
hyperspectral scanning data and field data, will be described. 

 
Figure 1. Location of the Amsterdam Water Supply Dunes in The Netherlands. 

Hyperspectral scanning data 
An airborne GER EPS-A scanner was used to record an image of the AWD area on 23 May 2001. 
The EPS-A scanner recorded data in 33 wavelength bands, 28 of which are in the wavelength 
range of 363 nm to 1061 nm. Two bands were sampled in the SWIR range of the spectrum, at 
1691 nm and 2173 nm, and one band in the thermal at 10260 nm. The band spectral resolution is 
approximately 9 nm. Two other bands are reserved for flight information. Table 1 gives information 
about flight details during the scan. 

Table 1. Flight details of the GER EPS-A scanner at 23 May 2001. 

Height 6000 feet 
Ground speed 120 m/s 
Scan speed 12 scan lines/s 
Pixel size 5 m x 5 m 
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The hyperspectral image is geometrically corrected with use of a digital false colour ortho-photo 
from the area of the same year (2001). More than 200 reference points made it possible to correct 
the image with the rubber sheeting method (13). The accuracy of the geometric correction model 
expressed in root mean square error is set on 1.2 pixels (6 meters) and is based on 40 dGPS 
measurements in the field. Reduction of the RMS errors was not possible due to considerable flight 
manoeuvres. 

Radiometric corrections were also applied based on the radiative transfer model Modtran (v.4). 
The correction for atmospheric influence could only be applied on 25 of the 33 bands, ranging from 
380 nm to 950 nm, due to limitations in the wavelength range of the radiative transfer model used. 
The radiation model was not able to remove the effect of sun glitter so eventually an area of 
4.75 km × 1.0 km was used for classification. 

Field data 
During the growing season (May and June) of 2001 an extensive field campaign took place for col-
lecting field data. 216 homogeneous field plots of 5 m × 5 m were delineated, from which the fol-
lowing data were collected: vegetation type, vegetation structure, spectra measured with a field 
spectrometer and location of each plot using a dGPS (11,14). Eight different vegetation structures 
(11,15) were discriminated, and 23 vegetation types (Table 2), following the typology of the Am-
sterdam Water Supply (11,16). Each plot was accordingly classified (i.e. one vegetation structure 
and one vegetation type per plot). 

Table 2: Vegetation types, structures and plant communities (17,18,19) discriminated within the 
AWD area whereupon further classification is based. 

Vegetation 
type 

Vegetation structure Plant community 

Sand Sand -- 
P2 Pioneer vegetation Phleo-Tortuletum typicum 
M4 Open moss vegetation Violo-Corynephoretum koelerietosum 
M5 Dense moss vegeta-

tion 
Violo-Corynephoretum typicum  
Frame community of Campylopus introflexus-[Koelerio-
Corynephoretea] 

G13 Short dune grassland Festuco-Galietum veri 
G13+ Tall dune grassland Festuco-Galietum veri 

R6 Rough Frame community of Calamagrostis epigejos-[Koelerio-
Corynephoretea] 

D4/D5 Scrub Hippophao-Sambucetum 
Hippophao-Ligustretum 
Frame community of Hippophae rhamnoides-[Koelerio-
Corynephoretea] 

K5 Scrub Frame community of Salix repens-[Polygalo-Koelerion] 
M2 Open moss vegetation Phleo-Tortuletum cladonietosum 
G5 Short dune grassland Taraxaco-Galietum veri 

G5+ Tall dune grassland Taraxaco-Galietum veri 
R2 Rough Frame community of Ammophila arenaria-Carex arenaria-

[Ammophiletea/Koelerio-Corynephoretea] 
R5 Rough Derivate community of Elymus spec-[Koelerio-Corynephoretea] 
K4 Scrub Frame community of Ligustrum vulgare-[Berberidion vulgaris] 
V1 Dune slack vegetation Festuco-Galietum veri � Botrychio-Polygaletum  
V2 Dune slack vegetation Taraxaco-Galietum veri � Botrychio-Polygaletum 
V4 Dune slack vegetation Frame community of Holcus lanatus-[Molinio-Arrhenateretea],  

Derivate community Calamagrostis epigejos- 
[Convolvulo-Filipenduletea] 



EARSeL eProceedings 3, 2/2004 146 

Table 2 cont.  

V5 Dune slack vegetation Pallavicinio-Sphagnetum 
V6 Dune slack vegetation Junco baltici-Schoenetum 
V8 Dune slack vegetation Derivate community of Phragmites australis- 

[Convolvulo-Filipenduletea] 
V9 Dune slack vegetation Derivate community of Typha latifolia-[Phragmitetea] 
K6 Scrub Taraxaco-Galietum veri (with Salix repens) 

CLASSIFICATION 
A supervised classification of the image was undertaken based on the field observations. The field 
study provided the training data for the presence of the vegetation types and vegetation structures 
and their locations. The spectra of these locations are extracted from the geometrically and radi-
ometrically corrected hyperspectral image. A subsequent study (14), based on field spectrometer 
data, has shown that most combinations of spectra of vegetation types are spectrally distinctive at 
the beginning of the growing season (May). Figure 2 gives examples of spectra of vegetation struc-
tures extracted from the EPS-A image.  

 
Figure 2: Spectra of different vegetation structures derived from individual pixels of the EPS-A hy-
perspectral image. 

Spectral characterisation 
To spectrally classify an image (using supervised methods) a set of reference spectra  is required. 
A canopy reflectance signal is the integrated outcome of a complex interaction of tissue chemical, 
canopy structural, and landscape organisational factors (20). Furthermore, as vegetation reflection 
characteristics change in time (14), standardising of vegetation spectra (i.e. using spectral libraries 
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as used in geological applications) is mostly not desired (21). Therefore, spectra extracted from the 
image itself are preferred as a basis for vegetation classification. This research illustrates two 
methods for spectrally characterising the local vegetation, where both methods make use of the 
EPS-A spectra of the field plots. 

‘Mean vector determination’ 
Image spectra corresponding with the locations of the field plots were collected. Half of the 216 
field plots have been used for determining spectral ‘endmembers’. Within the ‘mean vector deter-
mination’ the spectra belonging to the same vegetation type or vegetation structure are averaged 
per band. The mean reflectance forms the prototype spectrum for the given vegetation type. The 
set of prototype spectra forms the spectral ‘library’, which will be used for classification. 

‘Individual vector determination’ 
The ‘individual vector determination’ regards each spectrum, derived from the image at the location 
of the field plots, as unique. In this method all 108 (out of 216) field plots are used for the classifica-
tion with no prior averaging. After classification the classes corresponding to the same vegetation 
type or vegetation structure are combined to form unique vegetation classes. 

Spectral Angle Mapper 
A common classification method for hyperspectral data is the Spectral Angle Mapper (SAM) (22). 
This is one of the leading classification methods because it evaluates the spectral similarity in or-
der to repress the influence of shading to accentuate the target reflectance characteristics (23). 
The spectra are treated here as vectors in n-dimensions, where n is the amount of bands meas-
ured in the spectra. The SAM algorithm determines the similarity between two spectra (e.g. known 
vegetation type spectrum versus image pixel spectrum) by calculating the angle between the two 
vectors. The SAM classification results in an image with angles to the classes; a derivative product 
of this image is a classified map based on the smallest angles to the known vegetation type spec-
tra.  

Expert system 
The reliability of a classification can be improved by making use of knowledge of environmental 
conditions (10,22). Since vegetation structures and/or vegetation types can be directly related to 
environmental conditions, it is possible to use a-priori ecological expert knowledge to estimate the 
occurrence of vegetation structures/types based on environmental conditions at a given site. The 
result of the SAM classification can also serve as an input to the expert system. 

Rules provide the link between the GIS database layers and the knowledge of experienced vegeta-
tion scientists. The expert rule links together ecologists’ knowledge concerning individual species 
with the geographic data available for the study area. Expert tables are constructed containing the 
probabilities of occurrence for vegetation structures and vegetation types under different environ-
mental conditions. The expert tables, the environmental condition maps and the fuzzy classification 
result of the SAM classification enables us to reclassify the hyperspectral data (see Figure 3). The 
SAM classification results in per pixel estimations of probability of occurrence for each vegetation 
structure or vegetation type by means of the spectral angles. These probabilities are multiplied with 
the probabilities of occurrence (expert tables) in the given environmental conditions (thematic 
maps). Each pixel is thus classified according to the vegetation type/structure with the highest 
probability of occurrence. 

The choice of which environmental conditions to use to refine the classification, is strongly de-
pendent on the rate of influence of the conditions on vegetation species composition and the distri-
bution of vegetation types in the AWD. A number of different datasets from vegetation studies in 
the AWD have been analysed and have given insight into the importance of several environmental 
variables in coastal sand dunes, i.e. soil decalcification (gradient decalcified – calcareous), mois-
ture content of the soil (gradient dry – wet) and nature management (12,16,24). 
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Figure 3: Operating mode of the expert system. A pixel has been classified in a fuzzy manner 
(above), for example with the SAM classifier. Probabilities for the pixel are given for three different 
vegetation types (map layers). The addition of a thematic map (below), in this example the soil 
moisture content, together with probabilities for the different vegetation types belonging to the soil 
moisture content conditions at the position of this specific pixel, give a reclassified map. The ob-
tained fuzzy classification can be converted into a final classification by assigning the vegetation 
type with the highest probability to each pixel. 

Soil decalcification 
The decalcification depth of the soil is strongly dependent on lime content and the age of the soil. 
The soil decalcification depth has been derived from a detailed landscape ecological map and 
vegetation map of the AWD (16,25). Both maps are based on false colour aerial photos (1:5000) 
and fieldwork. For the vegetation map a typology has been developed, based on 1100 vegetation 
observations for which the vegetation species composition was described and the decalcification 
depth was measured. With this information a detailed soil decalcification map was produced. 

For every landscape type, and thus for every decalcification class, the relative area of the different 
vegetation types from the test site was determined by making an overlay with a recent map show-
ing the distribution of the chosen vegetation types and vegetation structures. The expert table for 
soil decalcification has been constructed using these relative areas, which can be considered a 
reliable measure for the probability of each vegetation type and vegetation structure per decalcifi-
cation class.  
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Moisture content 
The moisture content of the soil is mainly determined by the groundwater level. In the AWD the 
groundwater level is monitored by soundings four times a year and by measurements once every 
two weeks. The time sequence of soundings has been interpolated and converted into a map of 
the mean spring groundwater level (26), using a digital elevation model. 

For each vegetation type and vegetation structure in the expert table a probability of occurrence 
has been assigned, depending on the moisture content, by means of overlaying the map of the 
mean spring groundwater level with a recent vegetation map and incorporating expert judgement 
(16). 

Nature management 

For restoration and preservation of the biodiversity, several nature management measures are ap-
plied in specific parts of the AWD. Large parts of the dune slack vegetation are mown and other 
areas are grazed by sheep or cattle. The relative area of the vegetation types, which was deter-
mined by overlaying a map of the managed areas with the recent vegetation map, has been used 
for estimating the probabilities of the vegetation types per management measure and composing 
the expert tables. 

Model calibration 
The expert system needs to be calibrated as it is likely that not all environmental conditions are 
equally important. The conditions can be weighted based on their importance so that an optimal 
classification result can be reached. The order of importance has been investigated by means of a 
SAM classification in combination with each environmental variable separately. Four test areas 
were chosen representing different landscape zones in the AWD. The areas measure about 350 m 
× 150 m and do not overlap with the field plots; therefore they do not interfere with the accuracy 
assessment, which is based on the field plots. Based on the classifications of the test areas, i.e. 
the separate environmental variables combined with the SAM classification, and the inspection of 
an experienced vegetation ecologist who knows the AWD well, an order of importance of the envi-
ronmental conditions was set.  

After evaluation of the relative importance of each of the environmental conditions, the next step 
was to evaluate the appropriate weighting between the SAM classification and the combined envi-
ronmental conditions. This was determined by an expert (i.e. vegetation ecologist) by inspecting 
the results of the combined classification of the four test areas with different weighting factors. 

RESULTS 
Model calibration has given insight into the importance of the environmental conditions. After some 
trial and error the weightings for soil decalcification, moisture content and nature management 
were set at 0.5, 0.3 and 0.2 respectively. The ratio for the SAM classification versus the expert sys-
tem was set to 3:1. With this ratio a balance was found between the over ‘noisy’ result of the SAM 
and the over ‘smoothened’ result due to the expert system classification. This behaviour of both 
methods is well illustrated by figure 4, where the SAM classification results are compared with 
those of SAM with combination with the expert knowledge (with ratio 1:1) for one of the test areas. 
The best results were obtained for the four test areas with the ‘individual vector determination’ 
SAM classifier combined with the expert system.  

An accuracy assessment was made based on the remaining half of the field observations (108), 
not used in the classification procedure (validation data set). The results can be seen in table 3 and 
support the conclusions based on the visual interpretation of the four sample areas. Both methods 
show a better result for the ‘individual vector determination’ SAM classifier than for the ‘mean vec-
tor determination’ SAM classifier. In general the addition of the expert system gives better results 
although one exception is given, namely the vegetation type classification combined with the SAM 
classification (64% versus 60% correctly classified). The best result was obtained for the vegeta-
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tion structure with the ‘individual vector determination’ SAM classifier combined with the expert 
system, for which 69% is correctly classified. 

 
Figure 4: The results of a SAM classification and a classification with additional expert knowledge 
of one of the test areas (ratio of 1:1). The pixel size is 5 m x 5 m. The legend codes stand for dif-
ferent vegetation types that are explained in Table 2. 

Table 3: Results of the accuracy assessment for different classification methods which are based 
on 108 field observations, expressed in percentage correct classified. 

 SAM classification SAM & expert system classification
 ‘Mean vector 

determination’ 
‘Individual vector 

determination’ 
‘Mean vector  

determination’ 
‘Individual vector 

determination’ 
Vegetation structure 48 61 67 69 

Vegetation type 42 64 52 60 

 
Cross tables of the reference data (i.e. the field observations) against the image classifications 
were used to give insight into which vegetation types were mainly responsible for the 30-40% mis-
classification. Where no discrimination could be achieved with the SAM classification method be-
tween the dry dune vegetation and the moist dune valleys, the addition of the expert system gave 
opportunities to partly discriminate these vegetation types. 

Misclassification with the expert system was found to occur regularly within vegetation types which 
are ecological neighbours of each other, i.e. closely related in vegetation succession. These vege-
tation types are often spatial neighbours in the gradient rich dune landscape of the AWD. There-
fore, the misclassification might also be ascribed to errors in the geometric correction of the EPS-A 
image. Due to this inaccuracy, field plots which are situated in gradient rich parts of the dunes 
could be misclassified into their neighbours.  

Furthermore, misclassifications with the SAM- and the expert system classification were frequently 
observed among vegetation types with only 2 or 3 vegetation observations for the classification 
and 2 or 3 observations for the validation. Obviously two observations are not enough for a correct 
classification or validation. 
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DISCUSSION & CONCLUSIONS 
This study shows that airborne hyperspectral data can be used for the classification of coastal 
dune vegetation, while expert knowledge can enhance the results. For the gradient rich area of the 
AWD an accuracy of 60-70% was obtained. Schmidt et al. (22) obtained the same kind of results 
with airborne hyperspectral data combined with an expert system for the classification of a 
saltmarsh in The Netherlands, obtaining an accuracy of 66%. This was an improvement of 23% 
compared to aerial photo interpretation classification of that area (22). 

In this study two different methods for the SAM were compared. The so-called ‘mean vector de-
termination’ method is commonly used for hyperspectral analysis. Spectra for each material are 
averaged so that the spectral variability within the obtained prototype spectrum is not taken into 
account. Although common in geological studies, the use of prototype spectra is difficult to apply in 
vegetation classification as spectra vary in time (14). This research shows that averaging spectra 
from vegetation types will not yield accurate results within a SAM classification as the spatial vari-
ability within vegetation types is too great. To overcome this we used the so called ‘individual spec-
tral determination’ which treats each obtained spectra as unique. The spectral variability within 
each vegetation type is better represented and better results are obtained when combining vegeta-
tion classes after classification. The consequence of this method is the loss of the possibility to ob-
tain a multi applicable spectral library. However, this is not a serious loss as the goal of a universal 
spectral library is difficult to achieve for vegetation. 

The combination of the SAM with an expert system can improve the classification when vegetation 
is spectrally difficult to discriminate. The expert system we used increased the accuracy, averaged 
for the two classifications (that is, vegetation type and -structure) and the two vector derivations, by 
8%. Misclassifications occurred mostly among vegetation structures and -types which are ecologi-
cal and spatial neighbours. As the abiotic gradients in the coastal dunes of the AWD change within 
the same dimension of one image pixel (i.e. 5 m x 5 m), the derived spectra from the image need 
to exactly correspond with the field plots. When this is not the case, the derived image spectra of 
these field plots might represent a different, neighbouring vegetation type or a mixed pixel. This will 
result in misclassifications among spatially close vegetation types and therefore ecological 
neighbours. The geometric correction of the GER EPS-A scan has a RMS error of 1.2 pixels (6 m) 
and can therefore have direct influence on the classification. The accuracy of the classification can 
therefore be improved when the geometry of the image is enhanced. One way to accomplish this is 
to install a GPS/INS instrument on board of the airplane carrying the hyperspectral scanner, so that 
significant flight manoeuvres are correctly recorded. In that case, another, more accurate correc-
tion algorithm can be used. Misclassification of neighbouring vegetation types can also be reduced 
with an increased image resolution, as long as the RMS error is reduced to the normal accepted 
level of less than 0.5 pixels. In that case, the error introduced by geo-correction, will not reach to 
the spatial dimensions of the vegetation gradients. 

The SAM classification can be considered as a fuzzy classification (27) which is the most suitable 
for ecological transition areas such as encountered here. Such classification algorithms are more 
sensitive to the imprecise (fuzzy) nature of the real world, and offer potential for extracting informa-
tion on the makeup of the biophysical materials within a mixed pixel. However users require hard-
ened classification maps with each pixel representing a single vegetation type, which produces er-
rors as a result of the mixed pixels encountered. 

The expert system can potentially be used for reducing the misclassification of neighbouring vege-
tation types as the abiotic environmental conditions are used as inputs for the classification. In this 
research the expert knowledge together with the spectral information is used for the whole study 
area at once. As mixing still occurs between vegetation types with different abiotic conditions, an 
expert system with stricter rules might further reduce mixing. This can be obtained with a classifica-
tion method based on hierarchical stratification, for example one with sub-areas so that spectral 
mixing between vegetations on different abiotic conditions is excluded. 

It is still not clear whether hyperspectral data, in combination with an expert system, can be used 
as a monitoring tool for vegetation changes as no other hyperspectral images have yet been re-
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corded for this area. However, the methodology employed here gives an overall accuracy of classi-
fication of 60-70%, which is still low for monitoring purposes. This methodology may therefore be 
more appropriate for use in monitoring areas with lower frequency abiotic gradients, where there 
will be fewer mixed pixels and where a ‘hard’ classification is therefore more appropriate.  
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